[image: image1.wmf] [image: image2.png]Cornell University Library





[image: image3.png]PENNSTATE
i) University Libraries





DPubS System and Development Agenda
2004-2006

Digital Publishing System (DPubS) is the name given to a set of software modules developed at Cornell that together meet a range of electronic publishing needs: access, navigation, and delivery of full-text content in a variety of file formats; subscription access controls; e-commerce services (pay-per-view); automated lookup and linking to other information resources (includes DOI registration, OAI compatibility, and reference linking); usage statistics for publishers and institutional subscribers; and appropriate safeguards against automated downloading of resources. The origins of DPubS are in the Dienst system, developed by Cornell's Computer Science department in the early '90s and used for several years as the engine behind NCSTRL, a distributed network of Computer Science technical reports. This code base has been significantly modified and extended, and this enhanced version of the Dienst system now supports Project Euclid. 

The DPubS architecture supports and coordinates distinct services, which are implemented as separate software modules. In all, there are currently ten services, each supporting a functional area of activity. For example, the Index Service indexes metadata or full-text from a repository, or set of repositories, queries these indexes when requested, and returns search results. The Subscription Service manages subscription data and answers access rights questions when controlled content is requested. Other services include Repository, User Interface, and Registry Services. Each DPubS service has a well-defined interface. The syntax for making every request of a particular service and the expected format of each response are documented. The Dienst protocol formed the basis of this documentation, and subsequent extensions (new requests and responses) are documented in the DPubS code. This protocol is based on HTTP verb requests. A similar idea was employed for the OAI protocol for metadata harvesting, which borrowed directly from Dienst and resembles it closely in design. The advantage of having such clearly articulated interfaces is that services can be extended (the addition of new functionality, with corresponding new requests and responses), without breaking existing dependencies. This flexible and extensible modular design makes the DPubS system well-suited for open source development, since existing functionality need never be disrupted by another developer's desire to enhance that functionality.

Development Agenda
The scope of work on DPubS during the current project period, 2004-2006, will focus on the following features and improvements:

1. Creation of a general-purpose publishing platform 

While much of the underlying system, as currently implemented, is independent of any particular content type or front-end look and feel — a strength of working from the core Dienst system design, with its independent service architecture — the DPubS front end, the User Interface Service, does not support the broad range of content types and display options that would be desirable. In order to move beyond math literature and the Euclid community, and to make DPubS a general-purpose publishing platform attractive to a wide range of publishers and publications, three areas of work are needed:

Redesign of the DPubS User Interface Service module to allow for the implementation of a scalable and extensible XML/XSLT architecture. This major upgrade to the system will provide a growing and diverse cohort of publishers with the flexibility to cost-effectively modify the look and feel of publication-specific pages and customize any sub-components publications within a single instance of the system.

Redesign of underlying configuration and metadata services to support a full range of publishing entities and object types. The redesign and rationalization of the configuration metadata used within DPubS will allow us to support a wider variety of hierarchical models in a more flexible manner. For example, we anticipate needing groups, or “communities”, that may include several publishers, or one publisher that offers multiple publications. Additional work is also needed to support a more extensible object metadata model, such as METS, in order to allow for a variety of metadata standards and a richer range of metadata types (technical and administrative, as well as descriptive).

Enhancement of DPubS's capability to handle non-serial literature. The Euclid version of DPubS was designed to receive and deliver serial literature. The structure of non-serial literature differs in significant ways, and DPubS needs to support the ingest and delivery of myriad document formats. In general, what is required is the enhanced ability to handle a wider range of document models. It should be emphasized that extending DPubS capability beyond journals does not represent an alternative development of core functionality of the system, but will significantly increase flexibility of application.

2. Provide on-line editorial management services to support “peer review” activities
These services would provide a suite of document management tools for use by journal as well as monograph publishers. These tools would fit into the publishing workflow where appropriate. An important design feature for such services would be that the tools are operationally independent of each other or have well-defined APIs for interacting. This will allow for staged and/or independent development.

Editorial management services might include:

· an on-line manuscript submission, with automated alerts 

· a reviewer database 

· mechanisms (perhaps multiple) for distributing papers to reviewers 

· a tool to collect and organize feedback from reviewers 

· a tool to track accepted papers through the editorial and composition process 

· sorting/queuing capabilities, to organize prospective journal issues 

· access mechanisms for forthcoming articles 

· ability to "publish" articles or entire issues, by easily moving final copy from the editorial work area to the public distribution space in DPubS 

3. Enhance the administrative functionality and interface 
This work would rationalize production workflow, allowing greater segmentation of tasks and the creation of simple tools to manage lower-level processes (adding new publishers, adding new content, producing usage statistics, troubleshooting user login problems, answering mail, etc.). The goal would be to reduce the staffing cost for much of the daily/weekly administrative work by reducing the skill level needed. 

4.
Ability to interoperate with Institutional Repositories (IR)
We anticipate broad interest from adopters of institutional repository systems in providing electronic publishing services via DPubS. The DPubS system could be engineered as a layer on top of an institutional repository, using the IR for its data storage and repository functions. Much of this work would involve developing an API for the IR. While all institutional repositories would be encouraged to develop interoperability with DPubS, this project will target Fedora and DSpace, directly enabling that capability.
