Lots of Checksums
Keep Stuff Safer

Nicholas Taylor (@nullhandle)
Program Manager, LOCKSS and Web Archiving
Stanford Libraries

Flexibility and Pragmatism: Thinking Differently about “Better” for Digital Preservation Services
CNI Spring Membership Meeting
8 April 2019
community best practices

<table>
<thead>
<tr>
<th>Table 1: Version 1 of the Levels of Digital Preservation</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Level 1 (Protect your data)</strong></td>
</tr>
<tr>
<td>Storage and Geographic Location</td>
</tr>
<tr>
<td>File Fixity and Data Integrity</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

**NDSA Levels of Preservation Working Group:** “NDSA Levels of Digital Preservation”
lots more (purposeful) copies

• 3 copies too few for reliable long-term consensus on data integrity
• which is why LOCKSS prefers “lots of copies”
• LOCKSS copies don’t just provide idle redundancy
• LOCKSS copies also employed to provide:
  • data integrity attestations + consensus
  • high-confidence repairs
  • risk diversification
what are we protecting against?

- **familiar** threats:
  - hardware, media, software failures
  - natural disaster

- **more typical** threats:
  - economic failure
  - organizational failure
  - operator error
  - internal/external attack
who’s checking the checksums?

• fixity data **subject to same risks** as data whose integrity it assures

• it’s actually **more vulnerable** because:
  • more valuable
  • more centralized

• LOCKSS copies **tolerate multiple failures**, unlike canonical fixity store
canonical fixity store model
LOCKSS model
LOCKSS model
LOCKSS model
LOCKSS model
is this “better” digital preservation?
for sure

- 4+ LOCKSS copies technically better than 3x copies /w canonical fixity store
- increased confidence in data integrity consensus
- increased probability of good copy to repair from
- increased confidence in executing repairs
- better risk mitigation through decentralization
...or maybe not

- more copies means more cost
- greatest digital preservation threat is economic
- trade-off b/t level of preservation vs. amount of content preserved at given level
  - preserve less at higher preservation level
  - preserve more at lower preservation level
so, how to get the data integrity assurance provided by lots of copies without the cost of lots of copies?
blockchain!
?
not blockchain

• gap b/t hypothetical benefits vs. capabilities of real-world implementations

• recommended reading/viewing: DSHR, *Blockchain: What’s Not To Like?* from 2018 Fall CNI Meeting
LOCKSS fixity service

• make lots of copies…of checksums
• subject to LOCKSS polling + repair
• use consensus as indication of correct content checksum
• provide endpoint
• essentially, a canonical fixity store-like service, powered by LOCKSS

“Measure twice, cut once…” by GretaMichelle Joachim under CC BY 2.0
LOCKSS fixity service
LOCKSS fixity service
LOCKSS fixity service
LOCKSS fixity service
considerations

advantages

• high degree of data integrity assurance w/ few (content) copies
  • lower storage costs for high volume content
• provide data integrity assurance for content stored outside of LOCKSS system
• confidence in repair direction (or feasibility)

disadvantages

• fewer content copies to repair from
  • data integrity assurance useless if no remaining good copies
• low safety margin to detect + fix bad content copies
pilot use case

• **CLOCKSS Archive**
  - 12x-replicated LOCKSS network
  - long-term dark archive for the scholarly record

• supports:
  - scaling capacity
  - ensuring minimum level of preservation for more content
  - tiered appraisal

"Time #time #clock #johnlewis #poole" by Mark Hillary under CC BY 2.0
Question

Any Questions? by Matthias Ripp under CC BY 2.0