High Fidelity:

Connecting information for Better Research Reproducibility

Terrie Wheeler, AMLS
Director
Samuel J. Wood Library

Peter Oxley, PhD
Associate Director for Research Services
Samuel J. Wood Library
There are three fires burning that motivate our actions towards better reproducibility:

1. “Reproducibility Crisis”
2. Data Retention Mandates
3. Allegations of Misconduct
Attempting to reproduce research proves to be difficult, when you can’t get the data...

Ioannidis et al. (2009) Nat. Gen. 41:149
“OMB Circular A–110 states that the retention period is three years from the date the final financial report is submitted.”

“NSF states in its General Grant Conditions that records must be retained for three years after the submission of all required reports”

“in the case of research misconduct involving NIH funded records must be retained for six years after the final resolution date of the case.”

“retain research data pertinent to patented inventions for the life of the patent”
“about 2% of scientists admitted to have fabricated, falsified or modified data or results at least once”
“Up to one third admitted a variety of other questionable practices”

Fanelli (2009) PLOS One 0005738

“3.8% of published papers contained problematic figures, with at least half exhibiting features suggestive of deliberate manipulation”

Bik et al. (2016) mBio 00809–16

Brainard and You (2018) Science 00809–16
There are three fires burning that motivate our actions towards better reproducibility:

1. “Reproducibility Crisis”
2. Data Retention Mandates
3. Allegations of Misconduct

Maximizing data value and ethical research conduct
We are not automatically making research reproducible, but providing the infrastructure that helps make research reproducible.
How can we help researchers capture the data and workflows that lead to publishable results?
Hurdle #1: Dealing with confidential data

Hurdle #2: Researchers are very busy

Hurdle #3: Data and workflows are very diverse

Hurdle #4: Maintaining a high quality solution
Piece #1: Electronic Lab Notebooks capture (small) data and workflows, while remaining flexible to researcher needs

- Direct storage of images, data files, analysis files, workflows
- File versioning and immutable timestamps
- Integration with Jupyter Notebooks (on roadmap)
- Shareable and transferable
Piece #2: A file management system for tagging, tracking, and then archiving files on the institutional storage systems

- Data associated with a project/publication assigned a unique tag
- File identity managed by hashing
- File location tracked within institutional storage
- Actionable scripts for marking project complete, and archiving
Piece #3: Secure file access management and computation through the institutional Data Core

- Secured, collaborative, flexible
- Project governance and monitoring
- Data curation for import and export
Holding the pieces together: an institutional Data Catalog that connects data, workflows, governance and access conditions.

Discovery layer with the capacity to connect grants, data, publications...
The WCM Data Catalog was built to manage data governance and access conditions.

Scope of authorization
User authorization
Data Controls
Reuse scope
Three triggers to prompt capture and storage

1. Project/Grant completion
2. Publication
3. Faculty member leaves the institution

Move files to archive
Register project, file tag, ELNs in Data Catalog
Acknowledgements:

Curt Cole (WCM CIO)

Data Core
Alice Chin
Ana Proper
Frank Ashmun
John Ruffing
Jo Hargitai
Lucy Walle
Michael Bales
Heather Kleinschmidt

Data Catalog
The Data Catalog Collaboration (DDC)
Nicole Contaxis (NYU Langone)
Tom Campion

File System Management
Cindy Chen
Darrin Stivala (Starfish)
Doug Hughes (Starfish)
Jo Hargitai
Tony DiFazio

Electronic Lab Notebooks
Marie Linvill (LabArchives)
Cindy Chen
Danny Tan
Lucy Walle
Tony DiFazio
Design and Implementation of a Secure Computing Environment for Analysis of Sensitive Data at an Academic Medical Center.

Oxley PR, Ruffing J, Campion TR Jr, Wheeler TR, Cole CL.