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Why care about ARK identifiers? 404

Because robust web links are rare — the average URL lifetime is 100 days

ARKSs serve as persistent identifiers (PIDs) with metadata
e found in the Data Citation Index, HathiTrust, Wikipedia, Wikidata, Internet
Archive, ORCID profiles, etc.

In contrast to other PIDs, ARKs have

e no fees, no limits, no walled gardens (decentralized)

e very flexible metadata, including none

e can be assigned to anything digital, physical, or conceptual



ARK anatomy

A labelled URL with a globally unique identity inside it

https:/in2t.netlark:112345/fk123

makes ARK core globally unique
actionable identity (independent
(the resolver) of web and hostname)
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ARK organizations X

3.2 billion ARKs created by 1035 institutions — | sl
libraries, archives, museums, publishers, gt "; T
educators, etc. For example, e
Internet Archive University of California Berkeley
Bodleian Libraries Smithsonian National Museum
Berkeley Law Library National Library of France
Bibliotheque Mazarine University of Chicago
New York Public Library Musée du Louvre
French National Archives Family Search
National Library of Austria British Library
Library and Archives Canada Google

https://n2t.net/ark:/53355/cl010066723 —



https://n2t.net/ark:/53355/cl010066723

Next up: Dave Vieglais

1. Physical Samples
for Earth Sciences

-

Dave Vieglais
University of Kansas
vieglais@ku.edu



iISamples: The Internet of Samples

The Internet of Samples (iISamples) is a standards-based collaboration to
uniquely, consistently, and conveniently identify material samples, record
core metadata about them, and link them to other samples, data, and
research products.

\/
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e Funded by the US National Science Foundation (CSSI) projects
. - 2004815, 2004839, 2004562, and 2004642.
ISamples
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Factual Basis

Physical samples typically gathered for analysis

Analysis may be immediate or many years later

Samples may be consumed in analysis or preserved in perpetuity

Derived products such as analyses and publication form graphs of

knowledge

e Often beneficial to verify analysis, traversing from publication to original
samples

e Linking by identifiers is also essential for attribution, ideally transitive from

publications to original sample collector

= =F
iISamples <



ISamples Components

O
i
S;mple metadata Collection |~ transform ——

e Adapters transform to core records
e Adapters, models for vocabulary mapping
e Records advertised using sitemaps
e Records exposed as JSON
e Records indexed for discovery
e Identifiers are key element
e

iISamples

g

Mode'l

iISB

iISB

"Central"
Collates multiple
sources

Linked Resources

iISB \
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http://www.youtube.com/watch?v=JzNadmklzNs

ISamples Summary

e Globally unique, resolvable identifiers are a critical core attribute of
physical samples.

e These identifiers facilitate the rapid development of power linked data
environments.

e ARK identifiers fill this role with a combination of technical characteristics,
reliability, and accessibility.

s
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iSamples
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But why?!

Epilepsy Detection Model with Brain MRI Data

Can | trust this
prediction?

D

Report:

Patient is
diagnosed
with Epilepsy
with %85
confidence.

@

Brain MRI data Complex ML model
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But why?!

Epilepsy Detection Model with Brain MRI Data

Can | trust this

prediction?
T e
\ XKL N eport:
/<\< )( /\/ ;(, .

\ . //XKIK&\ N\ //,’/“\—/‘ |:: > Patient is

/ : : ,‘</>é\ . - // diagnosed
A ’ ¥ { \\ //X‘X -/ with Epilepsy

/ 3 il \}.(// \\)/ with %85
< "/ confidence.

Brain MRI data Complex ML model

Why did you make that prediction?

Can | trust the Al models?



Two Biomedical Use Cases
for Deep Al/ML

Predictive model of cellular response to drugs based on very
high-dimensional research data and deep learning.

Predictive model notifying physicians 7 days ahead of
potential life-threatening events on infants in NICU.



Results Validation and
=xplainability

® Evidence graphs describe how results were obtained & provide
supporting evidence for correctness of results.

® We give graph node an ARK resolvable to supporting data,
software, and computational parameters- explainability!

® ARKSs have huge advantage where thousands of chained
computations are performed, and provide open metadata.



1. Predictive response modeling of
normal & diseased human cells

® Construct an accurate cellular component architecture based
on very high-dimensional research data and Al.

® Accurately predict cellular response to biochemical
perturbation (e.g. new drugs, etc.) using deep learning.

® Be able to interpret and explain model results robustly.
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CM4Al FAIR Integration Model

Data Acquisition Pipelines Tools Pipeline FAIR Integration
. Integrative FAIR Data & Software
I-F Microscopy AP-MS CRISPR / scRNAseq Modeling with Evidence Graphs
( } r } ( PID Metadata Provenance W
- a»
— 'f)
1 > 4 - aa» .,
| =3 |
- e ?
-
S ) [T ) | =
' : E : 0 :
% — ) : : — Q) —0O 1 %:
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local metadata | | * | local metadata | | ! | local metadata |. | local metadata | < [ il R

FAIRSCAPE integration with CM4AlI Tools and Data pipelines (adapted from CM4Al Data Dictionary Requirements
Version 1.0). FAIRSCAPE holds comprehensive FAIR metadata and deep provenance graphs on all CM4Al data objects.
Data is initially held locally, and accessed through contentURIs in the CM4Al metadata.
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Preliminary Map of Cell Architecture
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adapted from Qin et al. 2021 - A multi-scale map of cell structure fusing protein images and interactions.
Nature 600:536-542. 16 December 2021. https://doi.org/10.1038/s41586-021-04115-9
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Lundberg Lab / Human Protein Atlas
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FAIRSCAPE: initial use case

e NICU time series adverse event prediction on ~ 6,000 babies, > 100
algorithms, ~ 3,000 candidate features, 100 TB data

e Algorithmic result clustering > 17,000 computations per result

[7] J. Niestroy et al., “Discovery of signatures of fatal neonatal illness in vital signs using highly comparative time-series
analysis,” (2022) npj Digital Medicine. preprint: https://doi.org/10.1101/2021.03.26.437138. %

26 arks.org



2. Predictive Analytics in the Neonatal ICU

® Predictive analytics: neonatal ICU @ UVA Med Center
® 6,000 NICU babies, 10 years of vital signs data
® 80 time series algorithms X dozens of parameter sets

® Goal: Predict adverse medical events 7 days in advance



Single Patient, 7-node Graphlet
for HCTSA Computations

(complete graph for results > 17,000 nodes)



In [14]:

In [15]:

->

->

JSON-LD, schema.org & EVI Evidence Graphs

output_id = job_data[ 'Output Identifiers'][1]
r = requests.get('http://ors.uvadcos.io/' + output_id)
output_meta = r.json()

RenderJSON (output_meta)

“6context®: S{Z 1taumj. return metadata - formal ontology terms
"@id": "ark:99999/1la22eal0a-2bl5-4515-a851-6d2b2f7db211",
"@type": "Dataset",
"distribution": @©[1 item],
"eg:evidenceGraph": ©{ H
"@id": "ark: 99999/1a22ea0a—2b15—4515—a851—6d2b2f7db211D,AG Of provenance / eVIdence
"@type": "Dataset",
"distribution": ®{6 items},
"eg:generatedBy": ©{
"@id": "ark:99999/23eb4cfe-91d1-464b-8ed4f-7a372724547€f€", H H H
etapa s o ot to derived by this computation
"dateEnded": "Wednesday, October 30, 2019 07:16:15",
"dateStarted": "Wednesday, October 30, 2019 07:15:58",
"eg:usedDataset": ©{ H
"@id": "ark:99999/9f627f3e-c59f-495f-b2f5-13dlal06a622a", from thls dataset
"author": ®{3 items},
"description": "Heart

Rate Measures from patient from admission to discharge.",
"eg:generatedBy": @®{5 items},

"name": "Patient 7129 HR"
},
"eg:usedSoftware": ®{6 items}
},
"name" : "Output from job Job 7294"
Y
"eg:generatedBy": ©{
"@id": "ark:99999/23eb4d4cfe-91d1-464b-8e4f-7a372724547f"
}.
"identifierStatus": "DRAFT",

"name": "Output from job Job 7294",
"sdpublicationDate": "2019-10-30T19:16:29.76z",29


http://schema.org

Why do we use ARKs"?

® Persistent IDs for data (the evidence graph nodes)
® Free to mint ARKs and their metadata is flexible

® | arge ecosystem of users & developers



We used ARKSs for

® Complex evidence graph on Al/ML predictions
® Every node (dataset, computation, software) resolvable

® Each node persistently identified with an ARK



Conclusion

® ARKs are a useful, flexible, scalable persistent ID model.
® Especially useful for traceable complex computations.

® \We are happy to chat with prospective ARK users.
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Yamz.net and ARKs for metadata terms

3

Vocabulary creation, sharing, and standards —
better, faster, cheaper

John Kunze

S Drexel



YAMZ Browse Add Import Tags

Search for a term Ya mz. net

(Yet another
metadata zoo)

Glacier

Alternative definitions (28), class: vernacular (0)

Created 2022.03.08

Last Modified 2022.04.08
Contributed by GCW
Glossary

Term: Glacier
tals, is®¥ate art of a cluster, falling from

Permalink:
https://n2t.net/ark:/99152/h5966

Add comment

Contributions to the YAMZ metadictionary are dedicated to the public domain under the terms of CCO.

By using this site, you agree to Terms of Use and Privacy Policy statements similar to wikimediafoundation.org.
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Standardized metadata is rare

Theory
e Qur boss: “We use Dublin Core, PREMIS, X, Y, and Z, for interoperability.”

Practice
e Cataloger/Archivist/Scientist: “Frankly, we use those vocabularies, but with
our own local modifications to make them work for our objects.”
e Many unofficial dialects — per institution, per laboratory, per project
e Poor interoperability (see Metadata's Bitter Harvest, Library Journal, 2004)



The Metadata Universe
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A Visualization of the
Metadata Universe
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DCAM, EAC-CPF, indecs, Linked

Data, MADS, MARC Relator



Domain dialects — similar but different

Example: Earth Science > Cryospheric (frozen water) Science

28 different definitions of “glacier”
8 different definitions of “puddle”

13 different definitions of “firn” (old snow)

10 different definitions of “frazil ice” (fine spicules of floating ice)
7 different definitions of “ogive” (bands of light and dark ice in a glacier)

....and on and on

Sound familiar? What about your domain?




Which term definitions to keep or toss?

Traditional approach
e Busy experts in <your fast-moving field> on metadata standards committees
e ... often take years to reach consensus
e ... often no field testing is logistically feasible

An alternate approach is Yamz.net.



Yamz.net (Yet another metadata (zoo))

Yamz is not a standard, nor an ontology
e Yamzis a living dictionary of metadata terms
e Each term gets an ARK permalink, becoming a kind of
e ... proposed nano-standard — some are upvoted, others not
e Reputation-based voting (like Stack Overflow) helps choosing

Yamz is a microservice for sharing, testing, and revising metadata dialect
e All parts of metadata “speech”, all domains, all ontologies
e Field testing via practitioners and reputation-based voting
e Ontologies, software, and predicates reference metadata terms via ARKs
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